
JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 1

Efficient Range and Top-k Twin Subsequence
Search in Time Series

Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis Palpanas, Spiros Athanasiou
and Spiros Skiadopoulos

Abstract—Analyzing time series data is crucial for many applications. In particular, subsequence search refers to finding
subsequences within an input time series T that are similar to a query sequence Q. Existing subsequence search approaches typically
employ Euclidean distance or Dynamic Time Warping as similarity measures and address range queries. In this paper, we focus on
Chebyshev distance, which is the largest difference between each individual pair of points across the entire length of two compared
subsequences. We call such similar pairs twins. We first show how existing time series indices can be extended to perform twin
subsequence search. Then, we introduce TS-Index, a novel index tailored to the computation of twin subsequence search queries.
Moreover, given that specifying a distance threshold is often not straightforward, we show how TS-Index can also be used to evaluate
kNN queries. Our extensive experimental evaluation compares these approaches using real time series datasets. The results
demonstrate that TS-Index can retrieve twin subsequences faster than all other methods under various conditions.

Index Terms—time series indexing, subsequence matching, similarity search.

F

1 INTRODUCTION

A time series is a sequence of time-ordered data points. It
can represent various types of measurements, ranging from
household resource consumption sensor readings to human
body measurements using special medical instruments such
as an electrocardiogram. In the last years, generation of
time series data has grown exponentially due to rapid
technological advancements in mining and monitoring ap-
plications, including sensors and IoT. Analyzing time series
can provide various insights, such as the discovery of trends
and patterns, which has also led to an increasing scientific
research interest [5], [9], [18].

One of the fundamental problems over time series data is
subsequence search. Given an input time series T and a query
sequence Q (|Q| ⌧ |T |), subsequence search (or matching)
refers to finding subsequences within T that are similar to
Q. Most existing approaches employ Euclidean distance or
Dynamic Time Warping (DTW) as similarity measure [27],
[32]. Nevertheless, as observed in [35], no single measure
of similarity is suitable for every application or dataset (for

• Georgios Chatzigeorgakidis was with the Information Management Sys-
tems Institute of the ”Athena” Research and Innovation Center, Athens,
Greece.
E-mail: see gchatzi@athenarc.gr

• Dimitrios Skoutas was with the Information Management Systems Insti-
tute of the ”Athena” Research and Innovation Center, Athens, Greece.
E-mail: see dskoutas@athenarc.gr

• Kostas Patroumpas was with the Information Management Systems
Institute of the ”Athena” Research and Innovation Center, Athens, Greece.
E-mail: see kpatro@athenarc.gr

• Themis Palpanas was with LIPADE, Université de Paris and French
University Institute (IUF), Paris, France.
E-mail: see themis@mi.parisdescartes.fr

• Spiros Athanasiou was with the Information Management Systems Insti-
tute of the ”Athena” Research and Innovation Center, Athens, Greece.
E-mail: see spathan@athenarc.gr

• Spiros Skiadopoulos was with the Department of Informatics and Telecom-
munications of the University of the Peloponnese, Tripoli, Greece.
E-mail: see spiros@uop.gr

instance, different Lp norms capture different patterns of
similarity), hence even a single user may want to examine
different measures. This is also shown experimentally in
[8], where different similarity measures achieve different
classification accuracy in different datasets.

In this work, we focus on Chebyshev distance (also known
as L1 norm or maximum norm). It requires that the respec-
tive values of two time series are always close to each other,
while Euclidean distance or DTW allow a few values to
deviate as long as the rest are sufficiently close. More specif-
ically, the Chebyshev distance between two subsequences
of equal length is the maximum difference of their values
across their entire duration. We call two subsequences twins
with respect to a distance threshold ✏, if their Chebyshev
distance is not greater than ✏, i.e., their values do not differ
by more than ✏ at any timestamp.

Various applications can benefit from twin subsequence
search. One example concerns identifying doublet earth-
quakes. Two earthquakes are characterized as doublets if
their epicenter is located relatively close and they have
almost identical waveforms [36], [37]. Twin subsequence
search could help identify such cases, facilitating seismol-
ogists that study changes in the Earth’s inner core. Another
application comes from smart Traffic Light System (TLS)
cameras at road intersections, which count the number of
vehicles crossing towards each direction [10]. Modern TLS
sensors record several values per second, for tens of thou-
sands of traffic lights in a large city. Finding subsequences of
traffic data that are nearly identical across their entire length
can provide road network analysts with useful insights
regarding recurring events at specific road intersections in a
city, which can subsequently lead to improved traffic control
and more accurate congestion estimates. Furthermore, twin
subsequence search could be used to detect patterns in med-
ical applications. It could be useful in cases where doctors
search for very similar, known previous patterns of the same

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 2

(a) Absence of desired spike (b) Presence of undesired spike
Fig. 1. Examples of false positives obtained with Euclidean distance
compared to results with Chebyshev distance on subsequences of the
EEG dataset.

person in Electroencephalography (EEG) or Electrocardiog-
raphy (ECG) sequences [25], [28] that indicate a previous
medical condition, or try to detect irregularities where the
difference between a normal and an abnormal waveform
exceeds a given threshold [31]. Finally, Chebyshev distance
has been used in [17], revealing interesting findings on time
series representing closing prices of US mutual funds, as
well as in [7] for hyperspectral imaging classification.

A question that naturally arises is whether the same
results can be obtained by subsequence search using Eu-
clidean distance. We investigate this empirically by per-
forming the following indicative experiment on an EEG
input time series [21] with length of 1,801,999 timestamps.
Considering a query sequence Q and an initial Chebyshev
distance threshold ✏, we identify all twin subsequences,
producing 1,034 results in total. We then attempt to retrieve
the same results by subsequence search using Euclidean
distance. As will be shown later (see Lemma 1 in Sec-
tion 3.1), we need to set the Euclidean distance threshold
to ✏0 = ✏ ⇥

p
|Q|, where |Q| is the query subsequence

length, in order to ensure no false negatives. Searching
with this relaxed threshold under Euclidean distance yields
127,887 results, which include too many false positives, thus
requiring an expensive post-processing step to identify the
correct 1,034 twin subsequences.

Figure 1 exemplifies the intuition behind the false posi-
tives. Assume a query sequence Q and two matches, T , T 0,
obtained under Chebyshev and Euclidean distance, respec-
tively. As shown, T matches Q in all timestamps. Instead,
although T 0 is a match under the corresponding Euclidean
distance threshold ✏0, it either lacks a spike that is present in
Q (Fig. 1a), or exhibits one not present in Q (Fig. 1b).

Given a query sequence Q and a time series T , a naı̈ve
process for finding twin subsequences of Q across T is by
performing a sweepline scan. This scans T using a sliding
window of length |Q|, comparing at each timestamp the
query with the current subsequence extracted from T , and
adding it to the results if it satisfies the given threshold ✏
on Chebyshev distance. However, this approach is clearly
inefficient for very long time series.

In this work, we investigate index-based methods to
efficiently execute twin subsequence search. First, we show
how two state-of-the-art time series indices, namely KV-
Index [32] and iSAX [30] can be adapted for this purpose.
Then, we present our proposed index, called TS-Index,
which is tailored and optimized for this problem. TS-Index,
initially introduced in [6], is a tree structure that summa-

rizes the subsequences contained within each node using
Minimum Bounding Time Series (MBTS) [4], consisting of
an upper and lower bounding sequence. Furthermore, we
describe optimizations to the TS-Index in terms of memory
footprint and index construction time. The former is based
on Piecewise Aggregate Approximation (PAA) [14], while
the latter on bulk loading, utilizing an embedding of subse-
quences to a low-dimensional space followed by an ordering
using a space filling curve. We introduce efficient exact
algorithms for twin subsequence search, addressing both
threshold-based and k-nearest neighbor (kNN) queries. We
also consider the execution of variable-length queries. To
evaluate the performance of these methods, we conduct a
comprehensive experimental study against both real-world
and synthetic time series, including also a case study for
qualitatively assessing the results in certain real-world sce-
narios. Our experiments show that twin subsequence search
with TS-Index is faster than with previous indices, often by
orders of magnitude.

Summarizing, our main contributions are as follows:

• We introduce the problem of twin subsequence
search, and propose a filter-verification algorithm
that can be applied on state-of-the-art indices.

• We introduce TS-Index, a tree-based index tailored to
twin subsequence search, which utilizes appropriate
bounds in its nodes to prune the search space.

• We propose optimizations that improve the memory
footprint of the index and reduce its construction cost
via bulk loading.

• We present an algorithm for executing twin subse-
quence kNN queries over TS-Index.

• We experimentally evaluate our proposed methods
using real-world and synthetic datasets and compar-
ing them against appropriately adapted state-of-the-
art time series indices in terms of query execution,
memory footprint and index construction time.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Section 3 formally defines
the problem. Section 4 presents how it can be addressed
based on existing indices. Section 5 presents the proposed
TS-Index. Section 6 reports our experimental results. Finally,
Section 7 concludes the paper.

2 RELATED WORK

A straightforward method for subsequence search is with a
sweepline that scans the time series using a sliding window.
UCR suite [27] offers such a framework, comprising vari-
ous optimizations. Furthermore, Matrix Profile [34] includes
methods to detect the nearest neighbor subsequence for each
subsequence of a time series. However, the optimizations
introduced in these methods are specifically tailored to
Euclidean distance and therefore cannot be applied for twin
subsequence search. Furthermore, the lack of an index poses
efficiency and scalability limitations.

Indexing is advantageous for various time series search
operations; a detailed survey and experimental evaluation
of time series indices for similarity search can be found
in [9]. One family of methods is based on Discrete Wavelet
Transform [11]. This reduces the dimensionality of the time

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 3

series and generates an index based on the transformed
sequences. For instance, the Haar wavelet [12] has been used
to gradually reduce the dimensionality of time series and
build an index on the obtained coefficients [3]. Precision
and performance improvements can be achieved via bi-
orthonormal wavelets [26]. Furthermore, kNN search can
be performed by accessing the coefficients of Haar-wavelet-
transformed time series through a sequential scan over step-
wise increasing resolutions [13].

A more recent approach is based on the Symbolic Aggre-
gate Approximation (SAX) [16] representation. A SAX word
is a multi-resolution summary of a time series, quantized
on the value domain. It is derived from the Piecewise
Aggregate Approximation (PAA) [14], which segments a
time series on the time axis and approximates it by retaining
only the mean value per segment. This has led to the iSAX
index [30], a tree-based structure built over the SAX words
of a set of time series, leveraging their multi-resolution
characteristics. Each node in iSAX contains a SAX word that
guarantees a lower bound in terms of Euclidean distance
for all the time series indexed by it. To answer similarity
search queries, the index is traversed in a top-down fashion,
comparing at each step the SAX representation of the query
against the ones contained in each visited node.

Several extensions to iSAX have been proposed [22].
iSAX 2.0 [1] enables bulk loading, while iSAX2+ [2] min-
imizes the I/O operations caused by node splitting dur-
ing construction. ADS+ [38] is an adaptive version that
builds the index on-demand, while processing the queries.
DPiSAX [33] is a parallel and distributed version. ParIS [23]
and MESSI [24] take advantage of modern multi-core ar-
chitectures and hardware parallelization to accelerate pro-
cessing times for disk-based and in-memory indices, respec-
tively. Coconut [15] introduces sortable SAX representations
and utilizes a space filling curve to sort the time series and
build an index in a bottom-up fashion. ULISSE [19] can
answer similarity search queries of varying length.

Another recent method for subsequence search is KV-
Index [32]. After extracting all subsequences of a given
length from a time series and deriving their corresponding
mean values, it generates an index containing key-value
pairs. Each key represents a range of mean values for a
group of subsequences, pointing to starting positions of
these subsequences along the original time series.

As we show in Section 4, it is possible to execute twin
subsequence search queries using iSAX or KV-Index. How-
ever, since these indices are tailored to similarity search
using Euclidean distance, this approach is suboptimal, as
indicated also in our experiments in Section 6. Moreover, an
index for arbitrary Lp norms is described in [35]. It divides
each sequence into a fixed number of equi-sized segments,
and takes the mean of each segment to form a feature vector.
Such a generic approach favors flexibility; instead, our focus
in this paper is on optimizing performance specifically for
queries using Chebyshev distance.

In a previous work [5], we studied the problem of
discovering pairs and bundles of similar time-aligned subse-
quences within a collection of time series, based on Cheby-
shev distance, using a sweepline approach. In this paper,
we focus on searching for twin subsequences in an input
time series T that are similar to a query subsequence Q,

TABLE 1
Basic notations

T input time series
n length of time series T
Q query subsequence
l subsequence length
l0 query length (l0 � l)
✏ distance threshold
k number of nearest subsequences to retrieve

Tp,l subsequence of T with length l starting at position p
S (sub)sequence

d(S, S0) Chebyshev distance between equi-length subsequences
µ mean value of a sequence
Bu upper bounding time series of an MBTS
Bt lower bounding time series of an MBTS
VS embedding of subsequence S
µc minimum node capacity in TS-Index
Mc maximum node capacity in TS-Index
m number of segments

which is a different problem, and we propose an index-
based approach. In another previous work [4], we have
developed a hybrid index, called BTSR-Tree, which also
employs the concept of Minimum Bounding Time Series
(MBTS) to prune the search space. However, this is a spatial-
first index specifically tailored to queries over geo-located
time series. Moreover, it is based on Euclidean distance
instead of Chebyshev, and it does not support bulk-loading.

3 PROBLEM DEFINITION

Next, we formally introduce the twin subsequence search
problem and describe a generic filter-verification approach.
Table 1 lists basic notations used throughout the paper.

3.1 Problem Statement
A time series is a time-ordered sequence T = {T1,T2,...,Tn},
where Ti is the value at the i-th timestamp and n = |T |
is the length of the series (i.e., number of timestamps). We
use Tp,l to denote the subsequence {Tp, ..., Tp+l�1} starting
at timestamp p and having length l, where 1 p p +
l � 1 n. For brevity, we also use S to generally refer to a
(sub)sequence.

Given two sequences S and S0 of equal length l, we call
them twins if their Chebyshev distance is not greater than a
given threshold ✏. The Chebyshev distance of two vectors is
their maximum difference along any dimension. Hence, if S
and S0 are twin sequences with respect to ✏, their values at
any timestamp should not differ by more than ✏. Formally:

Definition 1 (Twin Sequences). Two sequences S and S0 of
equal length l are called twins with respect to a given threshold ✏,
denoted as S1 ⇠✏ S2, if their Chebyshev distance d is not greater
than ✏, i.e., d(S, S0) :=

l�1
max
i=0

(|Si � S0
i|) ✏.

We can now formally define the problem:

Problem 1 (Twin Subsequence Search). Given a query se-
quence Q of length l, a time series T of length n � l, and a
distance threshold ✏, find all subsequences S in T (|S| = l) such
that Q ⇠✏ S.

The following lemma establishes a relation between a
given Chebyshev distance threshold and a corresponding
Euclidean distance threshold.

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 4

Lemma 1. Given two twin sequences S ⇠✏ S0 of length l, their
Euclidean distance is ED(S, S0) ✏⇥

p
l.

Proof. If S ⇠✏ S0, then ED(S, S0) =
pP

i(Si � S0
i)

2 pP
i ✏

2 = ✏⇥
p
l.

Moreover, from Definition 1, it is straightforward to
derive the following property, stating that any pair of time-
aligned subsequences across two twin sequences are also
twins.

Lemma 2. Given two twin series T ⇠✏ T 0, then Tp,l ⇠✏ T 0
p,l for

any l 2 [1, |T |] and p 2 [1, |T |� l].

Notice that z-normalization is often used when compar-
ing time series. Throughout the paper, we consider vari-
ous possibilities: (a) working with the raw values, (b) z-
normalizing the entire time series, (c) z-normalizing each
individual subsequence. We discuss the implications of each
case where relevant.

3.2 Filter-Verification Approach
We can detect twin subsequences following a filter-
verification framework: the first step (filtering) generates
candidate subsequences, which are then evaluated in the
second step (verification) to identify those satisfying the
Chebyshev distance threshold. A straightforward approach
for generating candidates is to scan the entire time series
T with a sweepline and consider each subsequence Tp,l for
p 2 [1, |T |� l] as a candidate.

Verification is done by checking all pairwise value differ-
ences between Q and Tp,l. If the difference found at a times-
tamp exceeds ✏, then candidate Tp,l is rejected, otherwise it
is accepted. Verification can be accelerated by detecting false
positives as early as possible. To this end, if the values are
z-normalized, we can prioritize those points in Q having the
highest absolute value, since these are less likely to have a
match with the respective points in Tp,l. This optimization
is also used in UCR Suite [27], and is known as reordering
early abandoning.

Clearly, the drawback of this sweepline approach is that
it generates an excessive number of candidates (specifically,
|T |� l), thus incurring a prohibitive cost when dealing with
very long series. To filter candidates more effectively, in the
following sections we consider methods based on indexing
the subsequences of T . First, we address the problem using
existing state-of-the-art indices, and then we introduce a
novel index tailored to twin subsequence search.

4 TWIN SUBSEQUENCE SEARCH WITH EXISTING
INDICES

Next, we focus on two representative state-of-the-art indices
for time series similarity search, namely KV-Index [32] and
iSAX [2], showing how they can be used for twin subse-
quence search without altering their structure.

4.1 KV-Index
KV-Index is a state-of-the-art index for subsequence match-
ing [32]. Given a time series T , it is built by considering all
its subsequences of a pre-defined length l. Each subsequence
S is represented by a pair (p, µ), where p is its starting

position (i.e., timestamp) in T and µ is its mean value
over the next l timestamps. KV-Index is an inverted index
constructed over these pairs. Each key is a range of mean
values, whereas each inverted list entry contains intervals
of positions.

Twin subsequence search can be performed with KV-
Index based on the following lemma.

Lemma 3. Let two subsequences S and S0 of length l. If S ⇠✏ S0,
then |µ � µ0

| ✏, where µ and µ0 are the mean values of S and
S0, respectively.

Proof. Let S and S0 be twin subsequences of length l. We
assume that |µ � µ0

| > ✏, and prove the lemma by con-
tradiction: |µ � µ0

| > ✏)
1
l ⇥ |

P
i Si �

P
i S

0
i| > ✏)P

i |Si � S0
i| > l ⇥ ✏. The latter can only hold if there exists

at least one timestamp i where |Si � S0
i| > ✏, in which case

it cannot hold that S ⇠✏ S0.

Based on Lemma 3, we can use a KV-Index built over
a time series T to generate candidates for detecting twin
subsequences. Specifically, assume a query sequence Q with
mean value µq . The candidate subsequences in T are those
included in the inverted lists with keys [µmin, µmax], such
that µmin � ✏ µq µmax + ✏. Then, the obtained
candidates must be verified to derive the final results. Notice
that Lemma 3 is not effective if each individual subsequence
has been z-normalized, because then all mean values are
zero. Hence, KV-Index is applicable when working with raw
values or if the entire sequence is z-normalized.

4.2 iSAX Index
iSAX is a tree index structure for time series similarity
search [2]. Time series are z-normalized and indexed using
their Symbolic Aggregate approXimation (SAX) [30]. The SAX
representation of a series is derived in two steps. The
first applies Piecewise Aggregate Approximation (PAA) [14],
which splits the series in a specified number m of segments
and approximates each one with the mean value over
the corresponding time interval. The second step applies
quantization to assign each mean value to a discrete SAX
symbol. Hence, each SAX symbol X corresponds to a range
of mean values [µXmin , µXmax). The SAX representation of
a series is a sequence of m SAX symbols (one symbol per
segment), and is called SAX word. Notice that, by default,
SAX words are derived using precomputed breakpoints that
are selected assuming z-normalized values; nevertheless,
non-normalized values can also be handled by adjusting the
breakpoints accordingly.

Twin subsequence search can be performed over the
iSAX index based on the following lemma.

Lemma 4. Let two subsequences S and S0 of length l, and
their SAX representations SAX(S) = {X1, X2, ..., Xm} and
SAX(S0) = {X 0

1, X
0
2, ..., X

0
m}. If S ⇠✏ S0, then the following

conditions must hold 8i 2 [1,m]: µXimax
� µX0

imin
� ✏ and

µXimin
 µX0

imax
+ ✏.

Proof. According to Lemma 3, if two sequences are twins
with respect to a threshold ✏, then the difference between
their mean values is also bounded by ✏. Besides, according
to Lemma 2, any pair of time-aligned segments across two
twin sequences are also twins. Hence, if S ⇠✏ S0, then

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 5

for each pair of symbols Xi and X 0
i in the respective

SAX representations, the mean values denoted by these
symbols must not differ by more than ✏, which means that
µXimax

� µX0
imin

� ✏ and µXimin
 µX0

imax
+ ✏.

Based on the above, we can perform twin subsequence
search using iSAX as follows. Given a time series T , we
construct an iSAX index over all its l-length subsequences.
Then, for a query sequence Q, we traverse the iSAX index
starting from its root. At each node, we check the SAX
word of Q against the SAX word of that node, applying
Lemma 4. If the check fails, the node and its subtree can
be safely pruned; otherwise, the search continues at the
node’s children. Once a leaf node is reached, and qualifies
according to this check, all subsequences indexed therein
are retrieved as candidates for verification.

5 THE TS-INDEX

As discussed in Section 4, it is possible to use KV-Index or
iSAX to identify candidates for twin subsequence queries.
However, since these indices are not tailored to the matching
criterion, they tend to generate a large number of false
positives, incurring a significant verification cost, as con-
firmed in our experiments (Section 6). In the following,
we introduce TS-Index, which is specifically designed for
twin subsequence search. First, we provide an overview of
its structure and explain how it is constructed. Then, we
present an algorithm to evaluate twin subsequence queries
specifying a distance threshold. We also propose optimiza-
tions for reducing the index size and its construction cost.
Finally, we discuss how the TS-Index can be used to evaluate
kNN queries. The latter is very useful in practice, because
it is often not intuitive for the user to specify a distance
threshold.

5.1 Index Structure
The core concept in TS-Index is that of Minimum Bounding
Time Series (MBTS) [4]. An MBTS is a pair of sequences
that fully encloses a set of time series T by indicating the
maximum and minimum values at each timestamp. Figure
2a depicts an example of an MBTS enclosing a set of four
time series. Formally:

Definition 2 (MBTS). Given a set T of time series with equal
length l, its MBTS B = (Bu, Bt) consists of an upper bound-
ing time series Bu and a lower bounding time series Bt,
constructed by respectively selecting the maximum and minimum
values at each timestamp i 2 {1, . . . , l} among all time series in
T as follows:

Bu = {max
T2T

T1, . . . ,max
T2T

Tl}

Bt = {min
T2T

T1, . . . ,min
T2T

Tl}
(1)

The TS-Index has a tree structure. Each internal node
points to a set of children nodes, whereas each leaf node
points to a set of subsequences (more specifically, to the
starting positions of its indexed subsequences along the
input time series T). All leaf nodes are at the same level.
Each node is associated with an MBTS, which encloses all
the sequences indexed therein. Clearly, MBTS get tighter

when descending from the root to the leaf level. Figure 3a
illustrates an example of TS-Index for eight input sequences.
The MBTS of each node is depicted as a grey band.

5.2 Index Construction

Assume an input time series T and a subsequence length l.
The TS-Index over T is constructed in a top-down fashion,
by sequentially inserting all l-length subsequences of T .
When inserting a sequence S, we traverse the index from the
root, selecting at each level the node whose MBTS has the
smallest distance from S, until a leaf node is reached. The
distance between a sequence S and an MBTS B is calculated
using the following formula:

d(S,B) = max
i

8
><

>:

Si �Bu
i if Si > Bu

i

Bt
i � Si if Si < Bt

i

0 otherwise
(2)

where Bu
i and Bt

i are the ith values of the upper and lower
bounds of the MBTS B, respectively.

Each node has a minimum capacity µc and a maximum
capacity Mc, specifying the minimum and maximum num-
ber of children it can point to. Once a node exceeds Mc, it is
split in two nodes. This may cause the parent node to also
exceed the maximum capacity Mc, in which case it is split
too. Hence, this process recursively propagates upwards
until no further splits occur. This procedure ensures that
all leaves are placed on the same level of the tree.

During node splitting, the goal is to make the MBTS of
each new sibling node as tight as possible. If this is a leaf
node, we identify the two subsequences within the original
node having the highest Chebyshev distance and use them
as seeds for the two sibling nodes. Each remaining subse-
quence is assigned to the node where it causes the smallest
expansion of its MBTS, which gets updated accordingly. For
an internal node, the process is similar. Yet, adjusting its
MBTS in this case involves the MBTS of children nodes
instead of individual sequences. To accommodate this, the
distance between two MBTS B1 and B2 is defined as:

d(B1, B2) = max
i

8
><

>:

Bt
1,i �Bu

2,i if Bt
1,i > Bu

2,i

Bt
2,i �Bu

1,i if Bu
1,i < Bt

2,i

0 otherwise
(3)

where Bt
1,i, B

u
1,i and Bt

2,i, B
u
2,i are the ith values of the upper

and lower bounds of the MBTS B1 and B2, respectively.
Figures 2b and 2c exemplify the calculation of the distance
of a sequence S to an MBTS B and the calculation of the
distance between two MBTS (B1, B2) respectively; in both
cases, the distance is the length of the dashed red line.

Figure 3b depicts an example where inserting subse-
quence p10 into leaf node A3 of the TS-Index in Figure 3a,
causes it to split into two new nodes, A0

3 and A4 (we
assume µc = 2 and Mc=3). This process is then propagated
upwards, splitting the root into B1 and B2. To keep the
MBTS tight –according to Eq. 3–, nodes A1, A4 have become
children of B1 and A2, A0

3 are now children of B2. Finally, a
new root is added, increasing the index height by one.

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 6

(a) (b) (c)
Fig. 2. (a) MBTS enclosing a set of 4 time series. Distance between (b) a sequence S and an MBTS B, (c) MBTS B1 and B2.

(a) (b)
Fig. 3. (a) TS-Index for 9 input sequences. (b) Inserting p10 causes a split at leaf A3 and splits propagate upwards.

5.3 Query Execution

Twin subsequence search can be performed with a TS-Index
based on the following lemma.

Lemma 5. Assume a query sequence Q and a node N of the
TS-Index with MBTS B. If there exists a sequence S indexed at
N such that Q ⇠✏ S, then d(Q,B) ✏.

Proof. Assume that Q ⇠✏ S for a sequence S indexed by
node N . From Def. 2, it follows that Si 2 [Bt

i , B
u
i] for each

timestamp i. Moreover, from Def. 1, it follows that |Qi �

Si| ✏. Hence, from Eq. 2, we derive d(Q,B) ✏.

Given a query sequence Q, we traverse the index in
a top-down fashion, starting from its root. For each vis-
ited node N , we compare Q against N ’s MBTS, applying
Lemma 5 to prune its subtree. Note that this check can
be accelerated, since it is not necessary to fully compute
distance d(Q,B); instead, if the indexed values have been
z-normalized, we apply early abandoning (see Section 3.2)
to prune the node as soon as the value difference exceeds ✏
in at least one timestamp. Multiple paths starting from the
root may need to be explored, depending on the query and
the tightness of the bounds in the visited nodes.

Algorithm 1 describes the search process. The input
includes the query sequence Q, the constructed TS-Index
I , the given time series T and the threshold ✏. We start by
initializing a list L with the root’s children (Line 2). Then, we
traverse the index by iterating over this list (Lines 3-12). For
each node N currently in the list, we obtain its MBTS (Lines
4-5). Then, we check whether the distance between this
MBTS and the query is higher than the specified threshold
✏ (Line 6). If so, the subtree under the current node N is
pruned; otherwise, it is examined as explained next. If N is
not a leaf node, we insert its children in list L for probing
(Lines 7-8). Once a leaf node is reached, we iterate over all
the subsequence positions it contains and check whether
each corresponding subsequence is a twin of Q with respect
to ✏. If so, we add this subsequence to the final results (Lines

Algorithm 1: TwinSubsequenceSearch
Input : Time series T , TS-Index I , query Q, threshold ✏
Output: List R of twin subsequences to Q

1 R ;
2 L I.root.getChildren()
3 while L 6= ; do

4 N L.getNext()
5 B N.MBTS
6 if d((Q,B) ✏ then

7 if N is not leaf then

8 L L [{N.getChildren()}
9 else

10 foreach p 2 N.getPositions() do

11 if d((Q,Tp,l) ✏ then

12 R R [Tp,l

13 return R

9-12). The results are returned once all candidate nodes in
list L have been either probed or pruned (Line 13).

Cost Analysis. Assume a TS-Index built on a sequence
T of length n, using subsequence length l and minimum
capacity µc. The total number of indexed subsequences
is n � l + 1. Then, its maximum height is hmax =
dlogµc(n� l + 1)e. The maximum number of nodes of a tree
depends on its fanout f , which in our case is f Mc.
Specifically, the maximum number of nodes is O(fh�1),
where h is the height of the tree. Thus, in our case,
the maximum number of nodes is O(M

dlogµc (n�l+1)e�1
c).

For each visited node, we must compare the query se-
quence against its two bounding MBTS subsequences. Each
such filtering requires a number of comparisons in the
range [1, l]. Thus, in the worst case, we need to perform
O(2l⇥M

dlogµc (n�l+1)e�1
c) to reach leaf level during a range

search. Finally, if at each leaf we have to check all indexed
subsequences, we have a final worst case complexity of
O(l ⇥ (2M

dlogµc (n�l+1)e�1
c) + n� l + 1).

Answering Queries with Length l0 > l. We can exploit

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 7

a TS-Index built over subsequences of length l and also
answer queries for any length l0 > l. According to Lemma
2, if two sequences are twins, then any pair of respective
segments within them is also a twin pair with respect to the
same distance threshold ✏. Based on this, we can subdivide
the query sequence Q of length l0 > l into a number
of disjoint consecutive subsequences, each of length l. If
the right-most subsequence has length lower than l, it is
ignored. Then, for each of these subsequences, we execute
a search against the TS-Index to retrieve its twins. For each
subsequent execution, the starting timestamp of the result-
ing subsequences must coincide with the last timestamp of
the previous execution, otherwise they are discarded. The
final candidate positions on the input sequence are those
such that for each execution we obtained consecutive subse-
quences. Verification on these candidate positions yields the
final results.

5.4 Reducing Memory Footprint

For an input time series T and subsequence length l, we
need to extract and index |T | � l subsequences. Moreover,
each node in the index stores upper and lower bounds
(MBTS) that have the form of two sequences of length l.
This incurs high memory footprint when |T | is large.

To overcome this issue, we can apply Piecewise Ag-
gregate Approximation (PAA) [14] to the subsequences
extracted from T before inserting them into the index. In
particular, we split each sequence into m segments and
represent each segment by the mean value over the corre-
sponding part of the sequence. As PAA is also applied on
query sequence Q, query execution can still be performed
as described above, but now involving the PAA representa-
tions instead of the original subsequences. The correctness
of this can be easily derived from Lemma 2 (which implies
that each pair of respective segments should also be twins)
combined with Lemma 3 (which implies that the pairwise
differences between mean values are also bounded by ✏).

Using PAA, compressed MBTS representations are
stored in each node, with the segmentation factor being
determined by the number m of segments. Inevitably, this
also reduces to some extent the resolution of the bounds,
since now each MBTS is based on mean values. This implies
a trade-off between index size and pruning effectiveness.
Nevertheless, in our experiments (see Section 6), we are
able to significantly reduce the index size with negligible
performance drop.

5.5 Bulk Loading

The process described in Section 5.2 assumes that the index
is built by inserting each subsequence individually and
according to a predetermined order, typically the order in
which they are extracted from the input time series T . How-
ever, building the index in this manner is slow, due to the
overhead from node splits. Splitting nodes is computation-
ally expensive, as it requires calculating multiple pairwise
distances among subsequences, as well as updating the
MBTS of the involved nodes.

However, we can accelerate index construction through
bulk-loading. The idea is to follow a bottom-up processing in

Algorithm 2: BulkLoading
Input : Time series T , subsequence length l, node capacity µc

and Mc

Output: TS-Index I
1 L ;
2 foreach Tp,l 2 T do

3 S Tp,l
4 VS generateEmbedding(S)
5 ZS getZcode(S)
6 L L [{S} (sorted by ZS)

7 NL ;
8 count 0
9 N newNode()

10 foreach S 2 L do

11 if requireNewNode(µc,Mc, S,N) == True then

12 calculateMBTS(N)
13 NL NL [{N}
14 N newNode()
15 count = 0

16 N N [{S}
17 count++

18 I createParentNodes(NL,Mc)
19 return I
20 Procedure createParentNodes(N ,Mc)
21 N curr ;
22 Ncurr newNode()
23 count 0
24 foreach N 2 topLevel(N) do

25 if requireNewNode(µc,Mc, S,N) == True then

26 calculateMBTS(Ncurr)
27 N curr N curr [{Ncurr}
28 Ncurr newNode()
29 count = 0

30 Ncurr Ncurr [{N}
31 N.parent Ncurr

32 count++

33 if |N curr| > 1 then createParentNodes(N curr,Mc)
34 else return N curr

three stages: (a) re-order the subsequences based on similar-
ity; (b) insert the subsequences in this order to populate all
the leaf nodes; (c) construct the internal nodes at each level
in a bottom-up fashion to complete the tree structure.

The main challenge is how to determine the insertion
order of subsequences so that the resulting nodes have
tight MBTS. To this end, we use a Space Filling Curve (SFC)
to map each subsequence to a 1-dimensional point, such
that similar subsequences are more likely to be mapped to
nearby points. Specifically, we use the Z-order curve [29], as
it can be very efficiently computed, while providing a good
approximation, as indicated by our experiments.

However, since subsequences have a relatively high
number of dimensions, directly applying a Z-order curve
on them to reduce the dimensions from l to 1, results in low
accuracy. To avoid this, we first embed each subsequence S
to a 5-dimensional vector VS = [µ, vmin, vmax, pmin, pmax],
where µ is the mean value of S, vmin and vmax are its
minimum and maximum values, and pmin and pmax are the
respective timestamp positions in which these extreme val-
ues are observed. The intuition is that, if two subsequences
have a similar mean, maximum and minimum values, and
those maximum and minimum also appear close in time,
then their Chebyshev distance is more likely to be smaller.
Finally, we traverse these 5-dimensional points according
to the Z-order curve to determine the insertion order of

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 8

subsequences into the index.
Algorithm 2 describes the bulk-loading process. We start

by extracting all subsequences of length l from the input
time series T . For each subsequence S, we compute its
embedding VS and use it to determine its Z-order code
ZS . All subsequences are then inserted to a list according
to this order (Lines 2-6). Then, we populate the leaf nodes
by inserting the subsequences in this order (Lines 10-17).

Clearly, there is a trade-off when building the tree: plac-
ing less subsequences per leaf tends to yield tighter MBTS,
but creates many more nodes overall. Ideally, we would like
to populate each leaf above its minimum capacity µc, and
stop further insertions once the next subsequence expands
the existing MBTS significantly, even before reaching the
maximum capacity Mc. Towards this, we employ a heuristic
based on a dynamically adjusted “jump” threshold that can
assess such changes between consecutive Z-order code dif-
ferences. While a leaf or internal node is being updated with
new entries, we maintain the range of their corresponding
Z-order codes. Thus, we can calculate a “jump” threshold by
dividing this range by (µc +Mc)/2, assuming that nodes in
the constructed TS-Index will be half full on average. If the
difference in Z-order codes between the last subsequence
S0 added to this node and the next one S exceeds this
threshold, a new node is created with S as its first entry
(Line 11). Thus, two successive, but dissimilar subsequences
get indexed in separate nodes, keeping their bounds tighter,
as well as those in parent nodes at upper levels.

Once all leaf nodes are populated, we compute their
corresponding MBTS, and we recursively create the internal
nodes at each level (Line 18). We iterate over the nodes of the
previous level (Line 24) and add them to a new node, which
becomes their parent node (Lines 30-31). When a new node
is needed (Line 25), we calculate the MBTS of the new node
and add it to the list of nodes of the current level (Lines 25-
29). If there are more than one nodes at the current level, we
recursively invoke the same function to create their parent
nodes for the next level upwards. Once a single node is
obtained at a given level, it becomes the root (Lines 33-34).

5.6 Extension to k-Nearest Neighbor Queries
So far, we have assumed that twin subsequences are found
according to a user-specified distance threshold ✏. In prac-
tice, selecting appropriate distance thresholds is often not
straightforward. Next, we explain how TS-Index can also
process kNN queries, where the user only specifies the
number k of subsequences to be returned as most similar
to a query subsequence Q under the Chebyshev distance.

Algorithm 3 outlines the process. The input includes the
query sequence Q, the constructed TS-Index, the input time
series T and the parameter k. A priority queue R, sorted by
distance, holds the resulting subsequences (Line 1). The al-
gorithm recursively traverses the index in a depth-first man-
ner starting from the root (Line 2). For each current node,
we check whether it is a leaf or not. If it is an internal node
(Lines 13-25), we employ a local priority queue Plocal to
keep its children sorted by their Chebyshev distance to the
query. If we already have k resulting subsequences (Line 15),
we only need to push the child nodes that are closer than
the k-th closest element (Lines 16, 17); in this case, we use

Algorithm 3: TwinKNNSearch
Input : Time series T , TS-Index I , query sequence Q, integer

k
Output: List R of the k most similar twin subsequences to Q

1 R ;
2 KNNTraversal(I.root, T,R,Q, k)

3 Procedure KNNTraversal(N, T,R,Q, k)
4 if N is leaf then

5 foreach p 2 N.getPositions() do

6 if R.getSize() == k then

7 if d(Q,Tp,l) < R.peekLast().dist then

8 R.pollLast()
9 R.push(Tp,l,d(Q,Tp,l))

10 else

11 R.push(Tp,l,d(Q,Tp,l))

12 else

13 Plocal ;
14 foreach N 0 2 N.getChildren() do

15 if R.getSize() == k then

16 if d(Q,N 0.MBTS) < R.peekLast().dist
then

17 Plocal.push(N 0,d((Q,N 0.MBTS)))

18 else

19 Plocal.push(N 0,d((Q,N 0.MBTS)))

20 foreach N 00 2 Plocal do

21 if R.getSize() == k then

22 if d(Q,N 00.MBTS) < R.peekLast().dist
then

23 KNNTraversal(N 00, T, R,Q, k)

24 else

25 KNNTraversal(N 00, T, R,Q, k)

26 return R

early abandoning (if the values are z-normalized) to discard
a node as soon as the value difference exceeds the distance
of the k-th closest element in at least one timestamp. After
inserting the node’s children to the priority queue, we iterate
over it and recursively traverse the tree starting from the
closest element (Lines 21-25). As above, when the result list
size is equal to k, we can prune nodes (Lines 21-23). If the
current node is a leaf (Lines 5-11), we push each qualifying
subsequence contained in the current node to the results list
R (Lines 10-11). If we already have k resulting subsequences
(Line 6), we only keep subsequences that are closer than
the k-th closest element, which gets evicted (Lines 7-9). In
this case, we also use early abandoning (if the values are z-
normalized) to discard non-qualifying subsequences faster.

6 EXPERIMENTAL EVALUATION

Next, we present a comprehensive evaluation of our meth-
ods against four real-world and one synthetic dataset.

6.1 Experimental Setup
6.1.1 Datasets
We performed experiments against the time series listed in
Table 2, which contain diverse patterns and differ in their
total duration. In particular:

Insect Movement [21]: 64,436 insect telemetry readings
spanning around 30 minutes (36 readings/sec).

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 9

TABLE 2
Datasets and distance thresholds.

Dataset n ✏ (norm) ✏ (non-norm)

Insect 64,436 0.5,0.75,1,1.25,1.5 50, 100,150,200,250
EEG 1,801,999 0.1,0.2,0.3,0.4,0.5 20, 40,60,80,100
EOG 8,099,500 0.1,0.2,0.3,0.4,0.5 3,4,5,6,7
ECG 20,140,000 0.01,0.02,0.03,0.04,0.05 0.03,0.04,0.05,0.06,0.07
Synthetic 100,000,000 0.5 N/A

TABLE 3
Other parameters.

Parameter Value

Number m of segments 5, 10, 20, 25, 50
Sequence length l 50, 100, 150, 200, 250
Query length l0 100, 200, 300, 400, 500
Count k of results in kNN queries 10, 20, 30, 40, 50

Electroencephalography (EEG) [21]: 1,801,999 EEG readings
at 500Hz lasting one hour.

Electrooculography (EOG) [20]: 8,099,500 readings of the
electrical potential between front and the back of a human
eye.

Electrocardiography (ECG) [27]: 20,140,000 ECG data points
recorded at 256Hz, lasting 22 hours and 23 minutes.

Synthetic. To examine scalability, we generated a synthetic
time series by extending the EOG data. Specifically, we
appended replicas of the original EOG time series, after
randomly altering each data point by up to 25% of the time
series standard deviation. In total, we obtained a synthetic
series of 100,000,000 points.

Unless stated otherwise, we z-normalize the time series
to facilitate selection of distance thresholds.

6.1.2 Parameters
Table 2 indicates the different values for the distance thresh-
old ✏ used in the experiments against each dataset, for
z-normalized (norm) or original values (non-norm). Table 3
contains the values for subsequence length l, query length
l0 and number of segments m, which are common in the
experiments on all datasets, as well as the number k of re-
sults to fetch for kNN queries. In both tables, default values
are in bold. These values have been selected after running
several preliminary tests, which also guided selection of
other parameters. Specifically, for iSAX, the maximum node
capacity is set to 10,000 to enable index construction in
reasonable time even for larger datasets. The default values
for minimum and maximum node capacity in TS-Index are
set to µc = 10 and Mc = 30, respectively.

6.1.3 Methodology
For each dataset, we randomly picked 100 subsequences,
each of length l = 100 points, and used them as the query
workload in all tests against that dataset. We report average
response time per query (in milliseconds). We implemented
all methods, including KV-Index, iSAX, and TS-Index, in
Java. In all implementations, the structure of the index is
kept in memory, while the original input dataset is stored on
disk. Leaf nodes in the index contain the starting positions of
the subsequences in the input time series. Thus, when a leaf
is reached at query time, its corresponding subsequences

(a) Insect dataset

(b) ECG dataset

Fig. 4. Top-k similar subsequences.

are obtained from the input time series file using random
access. All experiments were conducted on a server with 4
CPUs, each equipped with 8 cores clocked at 2.13GHz, and
256 GB RAM running Debian Linux.

6.2 Case Study
Initially, we provide some intuition on the qualitative differ-
ences in the kNN results obtained when using Chebyshev
distance and Euclidean distance, by visually inspecting two
indicative cases. In the first, we execute a kNN query
for a selected subsequence on the insect time series (see
Section 6.1), and we display the top-5 matches in Figure 4(a).
In the second, we execute a kNN query for a selected
subsequence on a real-world ECG time series1, and we
display the top-50 matches in Figure 4(b). As we can see,
in both cases, some of the matches returned with Euclidean
distance (right column) contain outlying values (spikes) that
deviate significantly from the value of the query sequence
at the respective timestamp, while the results retrieved with
Chebyshev (left column) closely match the query across all
timestamps.

Next, we measure how much the result sets differ when
executing both range and kNN queries against each dataset
in Section 6.1, using either Chebyshev or Euclidean distance.
For range queries, we examine whether it is feasible to
discover approximately the same twin subsequences by
appropriately tuning a Euclidean distance threshold. For
each dataset, we first execute twin subsequence search using
a threshold ✏ on Chebyshev distance. Then, we repeat the
process using Euclidean distance and varying the threshold
from ✏ ⇥

p
|Q| to ✏ (see Lemma 1), reducing it by a specific

step each time. Figure 5 shows the resulting recall-precision
diagram for each dataset. The corresponding ✏ threshold
ranges and step for Euclidean distance are indicated in the
legend. As we can see, when starting from a low threshold

1. https://www.kaggle.com/shayanfazeli/heartbeat

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 10

Fig. 5. Precision/recall for various distance thresholds.

TABLE 4
Average correlation among kNN rankings.

Dataset
k value

10 20 30 40 50
Insect 0.1534 0.1481 0.0527 0.0454 0.0272
EEG 0.3761 0.1615 0.1071 0.0716 0.0558
EOG 0.2726 0.1959 0.1406 0.1144 0.0937
ECG 0.1495 0.1287 0.0995 0.0882 0.0595

that ensures high precision (above 0.8), recall is very low
(below 0.3), meaning that there is a very high number
of false negatives; on the other hand, as we increase the
threshold, recall eventually reaches 1 but precision drops
below 0.4, meaning that the majority of the results are false
positives.

For kNN queries, we use Spearman’s rank correlation
coefficient to measure the correlation between the two lists
of k nearest neighbors sorted by Chebyshev and Euclidean
distance, respectively. For different values of k, we average
the results over 100 randomly selected query subsequences.
The obtained values for Insect, EEG, EOG and ECG are
shown in Table 4, indicating very low correlation in all cases.

6.3 Performance
We compare the average execution time per query for vary-
ing values of each parameter, setting the rest to their default
values.

6.3.1 Effect of bulk loading on TS-Index
We first examine the impact of bulk loading using the EEG
dataset. Figure 6 compares the variant employing bulk load-
ing (TS-Index Bulk) against the one (TS-Index) that inserts
subsequences in the order they have been extracted from the
input time series. To evaluate the behavior of the two vari-
ants, we examine query execution time, memory footprint
and construction cost at different resolutions, i.e., by varying
the number m of PAA segments (up to no compression at
all, i.e., l = m = 100). We observe that both variants have
similar memory footprint, as shown in Figure 6a. The size
of each index grows as the number of segments increases.
Indicatively, when using only m = 50 segments (i.e., each
spanning a pair of successive time points), the index size
is reduced by approximately 40%. Of course, the finer the
segmentation, the more detailed the resolution of MBTS per
node. Then, query execution time improves by more than
an order of magnitude as Figure 6b testifies. The trends
in performance are roughly similar for both TS-Index and
TS-Index Bulk. However, with a coarser segmentation (5, 10,
and 20 segments), bulk loading gives a further advantage to

the index. This indicates that MBTS generated using em-
beddings after sorting and grouping the subsequences are
tighter even at lower resolutions. Naturally, this difference
is gradually eliminated as we further increase the number
of segments. Then, subsequence representation becomes too
detailed and little deviation should be expected in values
among those subsequences grouped together according to
the original ordering. Thus, the resulting MBTS get almost
as tight as those derived from the embeddings.

Nevertheless, the two TS-Index variants differ signifi-
cantly in their construction cost, as illustrated in Figure 6c.
When subsequences are inserted in the order they are
extracted from the input dataset, index construction takes
much longer as the number of segments increases. Indeed,
finer segmentation implies more node splits, which become
very expensive across many dimensions. In contrast, no
node splits occur in TS-Index Bulk, which reduces construc-
tion time by orders of magnitude compared to TS-Index.
Due to its bottom-up construction, MBTS of nodes at a given
level in TS-Index only need to combine the MBTS of their
descendants, which is far less costly than node splitting.
Given that TS-Index with bulk loading is advantageous
in terms of construction time, and answers queries faster,
in the sequel we only compare this variant against other
approaches.

6.3.2 Varying threshold ✏

Figure 7 depicts query execution time (in logarithmic scale)
for varying threshold ✏. As expected, searching with the
Sweepline approach has a fixed cost per dataset regardless
of ✏, since it needs to scan all subsequences extracted from
the input time series. Relaxing the threshold incurs an over-
head when an index is involved. Queries against KV-Index
perform poorly compared to other indices, since filtering
based on mean values achieves less pruning. Searching with
TS-Index outperforms the rest in every setting for all tested
datasets, with the only exception being iSAX for ✏ = 0.01
in the ECG dataset. Overall, TS-Index is at least an order
of magnitude more efficient in twin subsequence search
compared to the KV-Index and Sweepline approaches. It is
also consistently better than iSAX as it is less susceptible to
fluctuations in the input sequences.

6.3.3 Varying Number of Segments
This experiment involves iSAX and TS-Index, since only
these indices apply segmentation of subsequences. Fig-
ure 8 plots performance results for varying number of
segments. Again, TS-Index outperforms iSAX in almost
every setting, except for the coarsest segmentation in the
ECG dataset. Finer segmentation generally improves perfor-
mance of TS-Index, as its inner nodes contain more detailed
MBTS and can prune the search space faster. Yet, for the
finest segmentation tested (m = 25), the cost increases for
the EOG and ECG datasets, indicating a trade-off between
the segmentation and actual performance. The more the
segments, the better the pruning, but also more time points
have to be checked per node. Thus, increasing the number
of segments up to a certain value can be beneficial; past that
number, performance deteriorates. Interestingly, too fine
segmentation seems to harm iSAX even more, as in most
cases execution cost significantly worsens with more than

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 11

(a) Memory footprint (b) Query execution cost (c) Index construction cost
Fig. 6. Performance of TS-Index with and without bulk loading against EEG dataset for varying number of segments m.

(a) Insect Dataset (b) EEG Dataset (c) EOG Dataset (d) ECG Dataset
Fig. 7. Performance results with varying distance threshold ✏.

(a) Insect Dataset (b) EEG Dataset (c) EOG Dataset (d) ECG Dataset
Fig. 8. Performance results for varying number m of segments.

(a) Insect Dataset (b) EEG Dataset (c) EOG Dataset (d) ECG Dataset
Fig. 9. Performance results for varying subsequence length l (query length l0 = l).

10 segments. With 25 segments, TS-Index responds more
than an order of magnitude faster compared to iSAX.

6.3.4 Varying Subsequence Length
Figure 9 plots performance results with a varying length l
for subsequences obtained from the input time series. In all
cases, the query length is set to be equal to l. Increasing
l seems to slightly negatively affect all approaches, except
for TS-Index. Since longer subsequences are extracted, more
checks are required, both in nodes (in case of iSAX) and
raw subsequences during verification. Instead, TS-Index is
faster when longer subsequences are specified, as it becomes
less likely to find matching twins. Thanks to the Chebyshev
distance, TS-Index has more pruning capability and can skip
non-qualifying subtrees earlier at higher levels in the tree
hierarchy. Thus, much fewer leaf nodes are accessed and

need to be verified, sparing much of the verification cost for
checks per timestamp.

6.3.5 Varying Parameter k for kNN Queries

Figure 10 compares performance of twin subsequence kNN
queries against TS-Index and iSAX for different values of k.
TS-Index outperforms iSAX in every setting, with smaller
differences noticed for the ECG dataset (Figure 10d), which
is in line with the previous experiments. Increasing k has
a negative impact on performance in most cases, except for
iSAX on the EOG dataset (Figure 10c), where performance
seems rather stable. This could be due to the rather large
leaf sizes in iSAX, which increases the probability of finding
(almost) all k results in a single leaf node, thus requiring less
node accesses for k values of the same order of magnitude.

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 12

(a) Insect Dataset (b) EEG Dataset (c) EOG Dataset (d) ECG Dataset
Fig. 10. Performance of kNN search for varying values of parameter k.

(a) Insect Dataset (b) EEG Dataset (c) EOG Dataset (d) ECG Dataset
Fig. 11. Performance results for varying distance threshold ✏ on z-normalized subsequences.

(a) Insect Dataset (b) EEG Dataset (c) EOG Dataset (d) ECG Dataset
Fig. 12. Performance results for varying distance threshold ✏ on non-normalized data.

(a) Index construction time (b) Average query response time (c) Total cost
Fig. 13. Scalability results against the synthetic dataset for various time series lengths (n) and query workloads.

Fig. 14. Memory footprint per in-
dex constructed for the various
datasets.

Fig. 15. Performance for varying
query length l0 (all indices built
with l = 100).

6.3.6 Searching over z-normalized subsequences
We repeat the experiment for varying distance threshold
✏, this time applying z-normalization over each individual
subsequence, before inserting it in the index. As mentioned
in Section 4.1, KV-Index cannot be built on such data since
the mean value per subsequence would always be zero;

thus, we only compare TS-Index with iSAX. The results
are depicted in Figure 11. Clearly, z-normalizing the sub-
sequences separately has no significant effect on the per-
formance of TS-Index; the results are similar to those in
Figure 7, with TS-Index outperforming iSAX in all cases.

6.3.7 Searching on Non-Normalized Data

Query execution cost for identifying twin subsequences
against the raw (non-normalized) time series is depicted
in Figure 12. Some variations in performance are observed
depending on the dataset characteristics. For instance, iSAX
is closely competitive to TS-Index against the EOG data, but
its performance worsens and resembles that of KV-Index
against the Insect dataset. Overall, TS-Index copes better
than all the rest even for raw data, confirming its suitability
for twin subsequence search in various settings.

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 13

6.3.8 Varying Query Length
Figure 15 depicts the impact on performance when con-
structing each TS-Index with a fixed subsequence length
l = 100 and then executing queries of varying length
l0 2 [100, 500]. As expected, the execution time increases
when l0 > l, since this translates to multiple queries, one for
each consecutive part of the query subsequence. However,
more pruning also occurs, since all parts need to satisfy the
distance threshold, hence the overall extra cost is not very
high.

6.3.9 Index Size
Figure 14 presents the memory footprint of TS-Index, iSAX
and KV-Index for each dataset. KV-Index requires signifi-
cantly less space than TS-Index and iSAX, as it only keeps
in memory the mean value and position range per indexed
subsequence. Instead, TS-Index and iSAX occupy more
space due to their more complex structures. From these
results, it turns out that iSAX requires two to three times less
space than TS-Index. Indeed, iSAX needs to store one SAX
word per node, whereas a node in TS-Index is represented
by an MBTS, hence its increased memory footprint. Never-
theless, even with tens of millions of subsequences indexed
(e.g., for the larger ECG dataset), all indices, including
TS-Index, have sizes that easily fit in main memory.

6.3.10 Scalability
Finally, we examine the scalability of the various methods
against the synthetic dataset. Figure 13a depicts the index
construction time for various subsets of the dataset, ranging
from 20 to 100 million points. KV-Index can be constructed
fast even for larger time series, as it only needs to calcu-
late and store a mean value per subsequence. TS-Index,
despite its complex hierarchical tree structure, can still be
constructed within minutes even for the largest dataset
(100 million points). In contrast, iSAX failed to build in
reasonable time; in this test, it takes more than 5 hours to
index the subsequences for input time series having more
than 20 million points. We should note, however, that this
may be a limitation of our implementation, which does not
support bulk loading for iSAX.

Regarding execution cost, Figure 13b shows average
query response times with varying data sizes. In this case,
as the number of indexed subsequences also grows linearly,
this has an impact on execution cost. Note that TS-Index is
a clear winner regardless the data size, being at least one
order of magnitude faster than the rest. iSAX seems close in
terms of efficiency, but it could be built only for the smallest
subset of the data, as mentioned before.

Figure 13c depicts the total time of each method for (i)
building the index (if any) against the data subset of 20
million points and (ii) executing a workload with varying
number of queries of the same length. For a single query,
Sweepline and KV-Index are superior, since KV-Index is
built very fast and Sweepline does not need to construct
any index at all. However, as more queries are added to the
workload, the total cost is dominated by query execution.
Note that these two methods struggle to finish when the
workload contains more than 1,000 queries. iSAX is advan-
tageous over them when more than 100 queries are speci-
fied. However, TS-Index scales better with increasing query

workloads. Indeed, it emerges as the most suitable solution
when more than 10 twin subsequence search queries need
to be answered. Hence, it is more affordable to build this
index from scratch and utilize it to answer several queries
than to employ any of its competitors.

7 CONCLUSIONS

We have introduced the twin subsequence search problem.
Given a query sequence Q, an input time series T and a
distance threshold ✏, this task retrieves all subsequences in T
with Chebyshev distance to Q not higher than ✏. To answer
this query efficiently, we have introduced the TS-Index, and
proposed optimizations for reducing its memory footprint
and improving its construction cost. We have also shown
how TS-Index can be used for answering kNN queries,
which is useful when specifying a distance threshold is
not straightforward. Our extensive experimental evaluation
confirms the superiority of TS-Index for twin subsequence
search queries when compared to existing indices.

ACKNOWLEDGMENTS

This work was supported by the EU H2020 project Smart-
DataLake (825041), the EU H2020 project OpertusMundi
(870228) and the NSRF 2014-2020 project HELIX (5002781).

REFERENCES

[1] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh, “iSAX 2.0:
Indexing and mining one billion time series,” in ICDM, 2010, pp.
58–67.

[2] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J.
Keogh, “Beyond one billion time series: indexing and mining very
large time series collections with i SAX2+,” KAIS, vol. 39, no. 1,
pp. 123–151, 2014.

[3] K. Chan and A. W. Fu, “Efficient time series matching by
wavelets,” in ICDE, 1999, pp. 126–133.

[4] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, S. Athanasiou,
and S. Skiadopoulos, “Indexing geolocated time series data,” in
SIGSPATIAL, 2017, pp. 19:1–19:10.

[5] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, T. Palpanas,
S. Athanasiou, and S. Skiadopoulos, “Local pair and bundle dis-
covery over co-evolving time series,” in SSTD, 2019, pp. 160–169.

[6] ——, “Twin subsequence search in time series,” in EDBT, 2021, pp.
475–480.

[7] S. Demirci, I. Erer, and O. Ersoy, “Weighted Chebyshev dis-
tance classification method for hyperspectral imaging,” in Next-
Generation Spectroscopic Technologies VIII, vol. 9482. SPIE, 2015,
pp. 314 – 320.

[8] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: experimental compar-
ison of representations and distance measures,” PVLDB, vol. 1,
no. 2, pp. 1542–1552, 2008.

[9] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim,
“The Lernaean Hydra of data series similarity search: An experi-
mental evaluation of the state of the art,” PVLDB, vol. 12, no. 2,
pp. 112–127, 2018.

[10] B. Ghazal, K. ElKhatib, K. Chahine, and M. Kherfan, “Smart traffic
light control system,” in EECEA. IEEE, 2016, pp. 140–145.

[11] A. Graps, “An introduction to wavelets,” CiSE, vol. 2, no. 2, pp.
50–61, 1995.

[12] A. Haar, “Zur theorie der orthogonalen funktionensysteme,”
Math. Ann., vol. 69, no. 3, pp. 331–371, 1910.

[13] S. Kashyap and P. Karras, “Scalable kNN search on vertically
stored time series,” in SIGKDD, 2011, pp. 1334–1342.

[14] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra,
“Dimensionality reduction for fast similarity search in large time
series databases,” KAIS, vol. 3, no. 3, pp. 263–286, 2001.

JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2021 14

[15] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas,
“Coconut: A scalable bottom-up approach for building data series
indexes,” PVLDB, vol. 11, no. 6, pp. 677–690, 2018.

[16] J. Lin, E. J. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a
novel symbolic representation of time series,” Data Min. Knowl.
Discov., vol. 15, no. 2, pp. 107–144, 2007.

[17] R. A. K.-l. Lin and H. S. S. K. Shim, “Fast similarity search
in the presence of noise, scaling, and translation in time-series
databases,” in VLDB, 1995, pp. 490–501.

[18] M. Linardi and T. Palpanas, “Scalable, variable-length similarity
search in data series: The ULISSE approach,” PVLDB, vol. 11,
no. 13, pp. 2236–2248, 2018.

[19] ——, “Scalable data series subsequence matching with ULISSE,”
VLDBJ, vol. 11, no. 13, pp. 2236–2248, 2020.

[20] A. Mueen and E. Keogh, “Online discovery and maintenance of
time series motifs,” in SIGKDD, 2010, pp. 1089–1098.

[21] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover, “Exact
discovery of time series motifs,” in SIAM, 2009, pp. 473–484.

[22] T. Palpanas, “Evolution of a Data Series Index,” CCIS, vol. 1197,
2020.

[23] B. Peng, P. Fatourou, and T. Palpanas, “Paris: The next destination
for fast data series indexing and query answering,” in IEEE
BigData, 2018.

[24] ——, “MESSI: In-memory data series indexing,” in ICDE, 2020,
pp. 337–348.

[25] T. Penzel, J. McNames, P. De Chazal, B. Raymond, A. Murray,
and G. Moody, “Systematic comparison of different algorithms for
apnoea detection based on electrocardiogram recordings,” MBEC,
vol. 40, no. 4, pp. 402–407, 2002.

[26] I. Popivanov and R. J. Miller, “Similarity search over time-series
data using wavelets,” in ICDE, 2002, pp. 212–221.

[27] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions
of time series subsequences under dynamic time warping,” in
SIGKDD, 2012, pp. 262–270.

[28] M. J. Ribeiro, I. R. Violante, I. Bernardino, R. A. Edden, and
M. Castelo-Branco, “Abnormal relationship between GABA, neu-
rophysiology and impulsive behavior in neurofibromatosis type
1,” Cortex, vol. 64, pp. 194–208, 2015.

[29] H. Sagan, Space-filling curves. Springer-Verlag New York, 1994.
[30] J. Shieh and E. J. Keogh, “iSAX: indexing and mining terabyte

sized time series,” in SIGKDD, 2008, pp. 623–631.
[31] H. Sivaraks and C. A. Ratanamahatana, “Robust and accurate

anomaly detection in ecg artifacts using time series motif discov-
ery,” CMMM, vol. 2015, 2015.

[32] J. Wu, P. Wang, N. Pan, C. Wang, W. Wang, and J. Wang, “KV-
Match: A subsequence matching approach supporting normaliza-
tion and time warping,” in ICDE, 2019, pp. 866–877.

[33] D. E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas, “Mas-
sively distributed time series indexing and querying,” TKDE,
vol. 32, no. 1, pp. 108–120, 2020.

[34] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A.
Dau, D. F. Silva, A. Mueen, and E. Keogh, “Matrix profile I: all
pairs similarity joins for time series: a unifying view that includes
motifs, discords and shapelets,” in ICDM, 2016.

[35] B. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary
Lp norms,” in VLDB, 2000, pp. 385–394.

[36] J. Zhang, P. G. Richards, and D. P. Schaff, “Wide-scale detection
of earthquake waveform doublets and further evidence for inner
core super-rotation,” Geophys. J. Int., vol. 174, no. 3, pp. 993–1006,
2008.

[37] J. Zhang, X. Song, Y. Li, P. G. Richards, X. Sun, and F. Waldhauser,
“Inner core differential motion confirmed by earthquake wave-
form doublets,” Science, vol. 309, no. 5739, pp. 1357–1360, 2005.

[38] K. Zoumpatianos, S. Idreos, and T. Palpanas, “Indexing for in-
teractive exploration of big data series,” in SIGMOD, 2014, pp.
1555–1566.

Georgios Chatzigeorgakidis Georgios Chatzi-
georgakidis is a postdoc researcher at the Infor-
mation Management Systems Institute of Athena
Research Center. He acquired his diploma at the
department of Electronics and Computer Engi-
neering of TUC, Greece, his MSc degree at the
department of Computer Science and Engineer-
ing of DTU, Denmark and his PhD degree at the
Department of Informatics and Telecommunica-
tions of UoP, Greece.

Dimitrios Skoutas is a Principal Researcher at
the Information Management Systems Institute
of Athena Research Center. He received his
Diploma and PhD in Electrical and Computer
Engineering at the National Technical University
of Athens, Greece, and has worked as a post-
doctoral researcher at the L3S Research Cen-
ter, Germany. His research interests include big
data integration and mining, having more than
70 publications in these areas.

Kostas Patroumpas joined the Information
Management Systems Institute at Athena Re-
search Center in 2012 and has collaborated in
many research projects. Previously, he worked in
the industry as developer, IT manager, and GIS
consultant. He has served on the program com-
mittees of several conferences and has more
than 60 publications in the areas of data stream
processing, trajectory data management, spatial
analytics, and geospatial data integration.

Themis Palpanas is Director of the Data Intelli-
gence Institute of Paris (diiP), Senior Member of
the French University Institute (IUF), and Profes-
sor of computer science at the University of Paris
(France). He is the author of 9 US patents, the
recipient of 3 Best Paper awards, and the IBM
SUR Award. He has served as Editor in Chief for
BDR Journal, General Chair for VLDB 2013, and
Associate Editor for TKDE and DSE journals, as
well as PVLDB 2022, 2019 and 2017.

Spiros Athanasiou Spiros Athanasiou is a
Research Associate and Project Manager at
the Information Management Systems Institute
of Athena Research Center. He received his
diploma in Electrical Engineering at NTUA,
Greece, and has worked as a researcher, advi-
sor and project manager in R&I projects of the
public and private sector. His research interests
include (among others) Big Data and Semantic
Web infrastructures.

Spiros Skiadopoulos is a Professor at the
Dept. of Informatics and Telecommunications at
University of the Peloponnese and the direc-
tor of the M.Sc. program in Data Science. He
has served in the program committee of sev-
eral venues and participated in various research
and development projects. His scientific con-
tribution received a large number of citations.
He obtained his PhD degree from the National
Technical University of Athens (NTUA) and his
MPhil degree from the Manchester Institute of

Science and Technology (UMIST). More information is available at
www.uop.gr/⇠spiros.

www.uop.gr/~spiros

	Introduction
	Related Work
	Problem Definition
	Problem Statement
	Filter-Verification Approach

	Twin Subsequence Search with Existing Indices
	KV-Index
	iSAX Index

	The TS-Index
	Index Structure
	Index Construction
	Query Execution
	Reducing Memory Footprint
	Bulk Loading
	Extension to k-Nearest Neighbor Queries

	Experimental Evaluation
	Experimental Setup
	Datasets
	Parameters
	Methodology

	Case Study
	Performance
	Effect of bulk loading on TS-Index
	Varying threshold
	Varying Number of Segments
	Varying Subsequence Length
	Varying Parameter k for kNN Queries
	Searching over z-normalized subsequences
	Searching on Non-Normalized Data
	Varying Query Length
	Index Size
	Scalability

	Conclusions
	References
	Biographies
	Georgios Chatzigeorgakidis
	Dimitrios Skoutas
	Kostas Patroumpas
	Themis Palpanas
	Spiros Athanasiou
	Spiros Skiadopoulos

