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Abstract—Machine Learning (ML) applications require high-
quality datasets. Automated data augmentation techniques can
help increase the richness of training data, thus increasing
the ML model accuracy. Existing solutions focus on efficiency
and ML model accuracy but do not exploit the richness of
dataset relationships. With relational data, the challenge lies
in identifying join paths that best augment a feature table to
increase the performance of a model.

In this paper we propose a two-step, automated data augmen-
tation approach for relational data that involves: (i) enumerating
join paths of various lengths given a base table and (ii) ranking
the join paths using filter methods for feature selection. We show
that our approach can improve prediction accuracy and reduce
runtime compared to the baseline approach.

I. INTRODUCTION

Automated Machine Learning (AutoML) reduces the time
required in order to perform model selection, hyper-parameter
tuning, and feature engineering. As part of AutoML, automatic
data augmentation has emerged as a technique to improve
the amount and diversity of training data through image
transformation [1], [2]. In this work, we study the problem of
automatic augmentation of relational data for machine learning
models. We examine the typical scenario: in a relational
database the tables are connected by primary key-foreign key
(PK-FK) relationships. Given these relations, a base table and
a machine learning model, our goal is to find new tables
with useful features that will improve the current ML model.
Following, a user can join the base table with the newly
discovered tables, and obtain an augmented table with more
features for training the ML model.

State-of-the-art solutions. The above problem has been ad-
dressed in [3], [4], which use feature-target correlation meth-
ods to discover highly relevant features for classification. For
an automatic data augmentation process, the key challenges
always lay on: 1) for the automated computation, what factors
are relevant? 2) how to make the process efficient? Kumar et al
[3] focus on whether the new tables bring additional informa-
tion and their impact on the performance of the ML models.
ARDA [4] samples the tables and judges the importance of a
new feature by comparing it to random noise. However, in [3],
[4] they assume that the useful tables are directly joinable with
the base table; and relevant factor of choosing the features is
mainly the model accuracy. With the following example we
show the insufficiency of such assumptions.
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Fig. 1. Running example

Example. In fig. 1a, we illustrate a data augmentation scenario
of four related tables connected with PK-FK relationships.
Kidney-Disease is the base table with the target column class.
Figure 1c describes the accuracy and the tree depth of a
decision tree model trained on the base table. Figure 1e shows
another decision tree model using the base table and a directly
joinable table Patient-Disease. We can observe in Figure 1f
that by adding a third table Cell-info, we obtain a new model
with higher accuracy. Notably, when a decision tree is deep,
it is more likely to overfit. In this sense, we can also say that
compared to fig. 1e, the model in fig. 1f is more desirable.

Challenges. Therefore, given a base table, a ML model and
a set of PK-FK related tables, we aim to find the tables
with better predictive features, which reduce the likelihood of
overfitting and improve model accuracy. Our intuition is that
maybe such tables are not directly joinable with the base table,
but on a join path. Moreover, we also consider the efficiency of
downstream model training after data augmentation. A naive
approach would join all the possible tables, then rely on a
feature selection algorithm to select the most appropriate ones
for training the decision trees, which could be computationally
intensive. In addition, by comparing fig. 1d and f, we can see
that such an approach does not necessarily provide the best
model. We aim to find the join paths that indicate a selective
set of tables for augmentation. Such a subset of tables should
provide similar ML model performance compared to joining
all tables, but lead to much less time for decision tree training.



Why decision trees. We try to find the tables with good
features that are likely to improve the model accuracy before
training the models with the augmented dataset. However,
not all the feature selection methods allow comparing fea-
tures without executing the ML models; and sometimes they
are black boxes [5]. Decision trees use feature importance
measures such as information gains, Gini index. It becomes
possible to calculate such performance measures without the
completion of model building. Our intuition is to integrate such
performance measures into the automatic dataset augmentation
process. This is one of the main reasons why in this work
we focus on decision trees, besides its interpretability and
popularity as a classification model.

Contributions. Our solution is a two-step approach that
consists of (i) iterating through the space of possible join
paths and (ii) ranking the paths according to their correlation
with the target. We investigate if indirect foreign tables (tables
discovered over a join path longer than one hop) can benefit
to the augmentation by increasing the performance of the
decision trees. We rank the join paths using filter-based feature
selection methods, which capture the feature-target correlation.
This approach helps discover the relevant features and also
prune the feature space, leading to smaller yet improved
datasets, which speed up the model training and increase the
accuracy.

Outline. Following, we present some background information
in section II and describe our solution in section III. Then, in
section IV we assess the performance of our solution. Finally,
we discuss our future work and conclude in section V.

II. RELATED WORK

A. Dataset augmentation

Augmenting relational data with relevant features for ma-
chine learning has been studied from different angles. Kumar
et al [3] optimise data augmentation through join space
reduction by identifying and eliminating the spurious ones.
Our work is complementary, as we detect the most relevant
joins to increase the performance of ML models. ARDA [4]
describes an augmentation approach based on feature selection
and preliminary join materialisation. COCOA [6] is a system
for data augmentation based on correlation which uses virtual
joins to optimize efficiency. In our work, we materialise the
joins at every step during the traversal phase and reuse them
to save computation time.

The effectiveness of indirect joins has been proved by
JUNEAU [7] [8] and InfoGather [9]. JUNEAU extends com-
putational notebooks and uses notebook workflows to find
indirect candidates for augmentation via provenance tracking.
InfoGather requires not only a base table to find indirect tables
for augmentation, but also the attribute name or data value
examples for that attribute. Our approach requires the base
table and the PK-FK relations and outputs a ranked list of all
the possible combinations for augmentation.

B. Join path discovery

Aurum’s Enterprise Knowledge Graph (EKG) [10] uses
graphs to capture the syntactic relations between columns, as
well as to detect the PK-FK relations. Using this graph, Aurum
outputs all the transitively connected join paths of hop = k
given a source and a target node. Niffler [11] uses the same
EKG to find all possible combinations of columns, generates
only 2-hop join paths between these columns and ranks the
paths according tot the score from EKG. Our ranking function
is customised for ML classification. Thus we use feature-target
correlation to rank the paths.

Aurum and Niffler both use the traditional path enumeration
approach, which takes two nodes and outputs all the possible
or shortest paths between the two nodes [12]. Instead, we focus
on traversing the graph given only one node, the source, and
enumerating join paths of various lengths.

Another approach which differs from the traditional path
enumeration is D3L [13]. They enumerate join paths of various
length starting from a source attribute to discover other related
attributes whose values fit within the target table. Our approach
has a different focus, as we augment a table with more
attributes, instead of instances.

III. JOIN PATH-BASED DATA AUGMENTATION

A. Setup and approach overview

Problem setting. The inputs are a base table with features and
a target column, and a set of candidate tables that maintain
PK-FK relationships between them. The output is a ranked
list of possible join paths, starting from the base table, which
includes optimal features for training a decision tree model.
Preliminaries. In previous work [14], we have proposed a
system that can find PK-FK relationships among the tables
based on either schema information, data discovery systems
[15] or data profiling [16]. We represent the discovered PK-
FK relationships as graphs that we term Dataset Relation
Graphs (DRGs). A DRG is a direct acyclic graph G = (V,E),
where each node V corresponds to a column from a table
in a database. The nodes are connected by edges E which
denote three types of relations between the columns: 1) sibling
edges indicate columns belonging to the same source table,
2) pk fk edges represent inclusion dependencies such as the
primary-key foreign-key dependency, and 3) match edges
denote any other syntactic or semantic relations captured by
data discovery or schema matching methods. In this work,
we assume that the input tables have already been processed
and the DRGs generated with the sibling and pk fk edges.
Composite keys and self-joins fall outside the scope of this
paper and will be addressed in future work.
Approach overview. The goal of this work is to recommend
top-ranked paths (e.g., p1 in Fig. 1b) to users. The approach
consists of two steps. The first step is the enumeration of all
the possible join paths (Alg. 1) to discover features that are not
directly joinable with the base table and that could improve
model accuracy while reducing the chances of overfitting. The
second step is the ranking of join paths (Alg. 2), using a



ranking function integrated with feature importance measures,
in order to reduce the set of joined tables returned to the user.

B. Enumerating Join Paths

Given a user-provided base table t0 we traverse the DRG in
a Breadth-First Search manner. By following the sibling edges
(5) we can reach all the column nodes of the current table.
Among them we filter and obtain nodes with pk fk edges.
For those nodes, we retrieve their joinable nodes/columns
foreign nodes, by following those pk fk edges. In lines 7-
12, for each foreign node, we find its table tf , create a
new path p based on existing paths P . Consider the datasets
in Fig. 1a, where the corresponding DRG has three pk fk
edges: with Kidney-Disease.id ⇀ Blood-analysis.kd id
and Kidney-Disease.id ⇀ Patient-Disease.kd id we find
paths p2 and p3; with the pk fk edge Blood-analysis.id ⇀
Cell-info.ba id, we construct the path p1 based on the
existing path p2. We also save the IDs of the foreign nodes
(e.g.,Blood-analysis.id) for further usage in the ranking
algorithm. We use the discovered neighbours to retrieve the
corresponding table tf to perform the join between the tables
on path p. We save the newly augmented result in D. For
example, with the path p1 of Fig. 1b, we join the three tables
on p1 and store the result. Finally, we append tf to T , such
that we continue with the iterations until no further nodes can
be discovered. The output of Alg. 1 including the paths P , ids
I , and join result D, will be the partial input of Alg. 2, which
we introduce next.

Algorithm 1: Join Path Enumeration
Input : base table t0, dataset relation graph G
Output: dictionary of paths P and the corresponding IDs I , path-specific join

result D
1 Initialization: P, I,D, T ← []
2 T ← push(t0)
3 while T do
4 t← pop(T ) // current table t
5 S ← filterNodesWithPkFk(t, G)
6 foreign nodes← getFkNodes(S,G)

// Retrieve the tables of foreign nodes
7 foreach node nf ∈ foreign nodes do
8 tf ← getForeignTable(nf , G)
9 p← createPath(P, tf ), add p to P

10 i← getTablePK(tf ), add i to I
11 d← JoinTablesOnPath(p), add d to D
12 T ← push(tf )
13 end
14 end
15 return P , I , D

C. Ranking Join Paths

Alg. 2 ranks the join paths according to their contribution to
the decision tree model building. In Alg. 2 we iterate through
the enumerated join paths P and read the corresponding
augmented table from D (line 3). We drop the ID columns of
tables on the path p. This is an important pre-processing step,
as using the IDs for training an ML model leads to extreme
under-fitting. Next, we generate the score for each path. The
scores indicate the correlation between each column in d and
the target column l. The score is a value in the [0, 1] interval;
the closer to one, the higher the correlation. For each path, we

Algorithm 2: Join path ranking
Input : paths P and ids I , join result D, target column l of base table t0
Output: ranked list of paths R

1 Initialization: S ← {}
2 for p ∈ P do
3 d← get(D, p) // join result of current path
4 i← get(I, p) // IDs corresponding to current

path
5 d.drop(i)
6 score← pathScoreGen(l, d)
7 S[p]← score
8 end
9 R← rankPathMaxScores(S) // sort the ranked paths

in descending order
10 return R

TABLE I
DATASETS STATISTICS. Base IS THE NON-AUGMENTED TABLE, feat IS

THE NUMBER OF FEATURES AND tf IS THE NUMBER OF FOREIGN TABLES.

Dataset Base #(rows, feat) #tf #feat for each tf
Titanic (891, 3) 3 2, 6, 5

Kidney disease (400, 4) 3 11, 9, 7
Steel plate fault (1941, 9) 7 7, 6, 5, 6, 5, 5, 8

Football (1182, 5) 9 13, 5, 5, 6, 6, 6, 6, 6

save the highest score, which indicates that the dataset contains
at least one correlated feature with the target. In Sec. IV-A we
elaborate on the five filter-based feature selection methods,
which are used for score generation. Finally, we sort the join
paths in descending order based on the scores. The list of
ranked paths contains the table names, the columns used for
join and the join result. Given this list of ranked join paths, a
user can choose top-k join paths to augment the base table.

IV. EVALUATION

In this section, we describe our experimental evaluation,
which supports four goals. It shows that (i) by augmenting
tables, the accuracy of decision trees increases, (ii) by joining
all the related tables, the user faces with the trade-off between
efficiency and accuracy, (iii) our approach is robust against
other feature selection methods and (iv) our first goal holds
irrespective of the decision tree model.

A. Experimental setup

Datasets. We collected four datasets, which are used for
binary classification with decision trees, from Kaggle. We
created a synthetic dataset collection, summarised in table I, by
manually splitting the tables and creating the PK-FK relations.
By iteratively extracting the feature that appears on top of
decision trees, which is the most correlated feature, we split
the tables into smaller logical parts, each containing one of
the correlated features. We made the datasets, the algorithms
and the experiments publicly available*.
Baseline approach. It involves joining all the split tables
connected by a pk fk edge and using the resulted augmented
table to train the decision trees without any feature selection.
We call this approach the JoinAll approach.

*https://github.com/delftdata/auto-data-augmentation

https://github.com/delftdata/auto-data-augmentation


Evaluation. We measure the performance of our approach in
relation with the accuracy of the decision trees trained using
the augmented dataset. We create the following evaluation
scenarios.

• First, we compare the performance of the non-augmented
dataset against the dataset resulting from the best ranked
join path, called BestRanked.

• Second, we compare the JoinAll approach against our
BestRanked approach. Besides the accuracy of the deci-
sion tree model, we also measure the runtime† of each
approach and the depth of the resulting tree.

• Third, we compare five filter-based feature selection
methods [5]: information gain with entropy, information
gain with Gini index, Spearman’s correlation, symmetri-
cal uncertainty (SU) and ReliefF. This scenario supports
our third goal: showing that our approach is robust against
any feature selection method.

• Finally, we assess the robustness of our approach against
three decision tree models. We implemented the ID3 al-
gorithm and used another two out-of-the-box implemen-
tations of decision trees: CART and XGBoost. We used
grid search to tune two relevant hyper-parameters before
training each dataset (augmented or not). The relevant
hyper-parameters to our study are: (i) the maximum tree
depth, which is an indication of over or under-fitting
and (ii) the splitting criterion (Gini or entropy), which
determines the most correlated features that become the
nodes of the trees.

B. Results

BestRank against baseline and JoinAll. In fig. 2, we note
that our BestRank approach results in a non-trivial increase in
accuracy against the baseline approach across all algorithms
and datasets. However, when comparing with the JoinAll
approach, our solution performs equally well or slightly worse.
This behaviour is unsurprising, since the JoinAll approach
encapsulates all features, both relevant and less relevant. That
said, BestRank presents an advantage over JoinAll in terms
of runtime execution time and tree depth, as shown in fig. 3.
Moreover, we also observe an interesting behaviour between
the decision tree algorithms. While choosing CART results in
shorter execution time, the depth of the tree skyrockets for the
JoinAll approach. With this behaviour the algorithm sacrifices
the potential to generalise in order to achieve high efficiency.
Contrary, XGBoost prioritises fitting the data properly over
runtime performance. Nevertheless, our approach shows im-
provement in both runtime and tree depth in many cases.

Robustness against feature selection methods. Figure 4
shows the comparison in terms of accuracy between the
BestRank approach and the non-augmented datasets for each
decision tree algorithm and feature selection method. The
results show that our approach is robust against both the

†The experiments were run on a 2.4GHz Quad-Core i5 with 16GB RAM
and 500GB storage. All datasets fit in memory.

CART ID3

XGBoost
0

50

100

A
cc

ur
ac

y

football

CART ID3

XGBoost

kidney_disease

CART ID3

XGBoost

titanic

CART ID3

XGBoost

steel_plate_fault

BestRank JoinAll Non-aug

Fig. 2. Accuracy for BestRank, JoinAll and the non-augmented base table.

CART ID3XGBoost

0

50

100

R
un

tim
e 

(s
ec

) football

CART ID3XGBoost

0

20

40
kidney_disease

CART ID3XGBoost

0

10

20
titanic

CART ID3XGBoost

0

100

steel_plate_fault

CART ID3XGBoost

0

25

50

M
ax

 d
ep

th

CART ID3XGBoost

0

10

20

CART ID3XGBoost

1

2

CART ID3XGBoost

0

10

BestRank JoinAll

Fig. 3. Runtime and depth for BestRank, JoinAll.

0

25

50

75

A
cc

ur
ac

y
football

0

50

100

kidney_disease

0

25

50

75

titanic

0

50

100

steel_plate_fault

CART ID3

XGBoost

0

1

2

3

P
at

h 
le

ng
th

CART ID3

XGBoost

0

1

2

CART ID3

XGBoost

0

1

2

CART ID3

XGBoost

0.0

0.5

1.0

Gini Entropy ReliefF Spearman-corr SU
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feature selection method and the decision tree model. How-
ever, for the ID3 decision tree algorithm, the path ranked
the highest by the information gain feature selection method,
results in an augmented table which decreases the accuracy
of the ID3 algorithm. Furthermore, fig. 4 illustrates that the
feature selection methods impact the length of the join path.
For example, all the highest ranked join paths using ReliefF
have length = 1, while the rest of the feature selection
algorithms return paths of various lengths. This illustrates a
dependency between the datasets and the feature selection
methods. However, despite this dependency, our approach
shows an increase in accuracy regardless the feature selection
method.

Summary. These experiments reveal three key findings. First,
augmenting a base table with more features increases the
accuracy of decision trees. Second, using the JoinAll approach
results in a trade-off between efficiency and the ability of a
model to generalise. Lastly, our approach is robust against any
filter-based feature selection method.



V. FUTURE WORK AND CONCLUSION

We presented a greedy approach for automatic data augmen-
tation on relational datasets aimed at increasing the accuracy
of decision trees by discovering indirect join paths from a
given base table. While results are promising, we are currently
working on improving the approach to better suit data lake
scenarios, where the join space increases significantly.

To this end, we plan to avoid join materialisation through
alternative methods, such as virtual joins, join approximation,
and data sketches. We will extend the approach to include
match edges, composite keys, and self-joins. sFinally, we
plan to generalise our approach over a wider variety of ML
algorithms.
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